Actualités Offres de thèses Soutenances actuelles

Soutenances autorisées pour l'ED « École Doctorale Normande de Chimie » (ED 508 NC)

Liste des soutenances actuelles 3

Appοrt de la spectrοmétrie de masse à très haute résοlutiοn pοur la caractérisatiοn des huiles de pyrοlyse et autres sοurces d'énergie.

Doctorant·e
MASE Charlotte
Direction de thèse
AFONSO CARLOS (Directeur·trice de thèse)
GIUSTI PIERRE (Co-directeur·trice de thèse)
Date de la soutenance
08/02/2024 à 09:00
Lieu de la soutenance
Université de Rouen Normandie batiment IRCOF- Amphi POIRIER 76821 Mont Saint Aignan
Rapporteurs de la thèse
CHARON NADEGE
GERBAUX PASCAL Université de Mons-Hainaut (BEL)
Membres du jurys
AFONSO CARLOS, , Université de Rouen Normandie (URN)
CARDINAEL PASCAL, , Université de Rouen Normandie (URN)
CHARON NADEGE, ,
GERBAUX PASCAL, , Université de Mons-Hainaut (BEL)
GIUSTI PIERRE, , Cent Etud Sup Indust Pau CESI Paris
HUBERT-ROUX MARIE, , Université de Rouen Normandie (URN)
TOKARSKI CAROLINE, , Universite de Bordeaux
Résumé
La transition énergétique consiste à favoriser les énergies renouvelables comme celles issues de la biomasse. Par ailleurs, la gestion de la fin de vie des plastiques est une autre préoccupation majeure. Différentes méthodes existent aujourd’hui pour transformer la biomasse ou les déchets plastiques. Parmi elles, la pyrolyse, reposant sur la dégradation thermique en l’absence d’oxygène, est une méthode de choix permettant la transformation des matières solides en liquide, pouvant être utilisé comme biocarburants ou comme matière première pour la fabrication de nouveaux plastiques. Cependant, que ce soit à partir du plastique ou de la biomasse, les huiles produites par pyrolyse sont des mélanges organiques très complexes. Ils contiennent de nombreux hétéroéléments et métaux qui compliquent leur caractérisation. Le besoin de connaitre leur composition moléculaire est, pourtant, nécessaire, afin d’adapter les processus de transformation et/ou les traitements ultérieurs que devront subir ces nouvelles charges. La caractérisation à l’échelle moléculaire de mélanges organiques complexes nécessite l’utilisation de spectromètres de masse à ultra-haute résolution tel que le spectromètre de masse à transformée de Fourier par résonance cyclotronique des ions (FTICR). Cet appareil possède les meilleures performances en termes de résolution, gamme dynamique et précision de mesure. Il permet l’attribution sans ambiguïté de formules moléculaires uniques à l’ensemble des composés de l’échantillon. Dans cette optique, ce travail de thèse est basé sur le développement d’outils analytiques utilisant la spectrométrie de masse FTICR pour la caractérisation d’huiles de pyrolyse et de nouvelles sources d’énergie. Les techniques analytiques, anciennement mises en place pour les ressources fossiles, ont été adaptées pour appréhender ces nouvelles problématiques. Cela a nécessité l’évaluation de la sélectivité des différentes sources d’ionisation à pression atmosphérique (ESI, APPI et APCI) et la source à désorption et ionisation laser (LDI), et la mise en place de couplage en ligne avec la chromatographie permettant la séparation en familles moléculaires et l’obtention d’informations supplémentaires. Les représentations graphiques telles que les diagrammes du nombre d’insaturation (DBE) en fonction du nombre d’atomes de carbones et les diagrammes de van Krevelen ont été utilisé afin de mettre en avant les informations d’intérêt obtenues sur la composition moléculaire des huiles. L’ensemble de ce travail de thèse a permis d’augmenter la connaissance moléculaire de ces nouvelles charges, assurant ainsi l’évaluation et l’adaptation des procédés de valorisation.
Abstract
The energy transition includes the promotion of renewable energies such as those derived from biomass. Another important issue is the end-of-life of plastics management. Several methods are now available to convert biomass or plastic waste. Among them, pyrolysis, based on thermal degradation in the absence of oxygen, is the method of choice for converting solids into liquids that can be used as biofuels or as feedstocks to produce new plastics. However, the oils produced by pyrolysis, whether from plastics or biomass, are highly complex organic mixtures. They contain many heteroelements and metals, which make them difficult to characterize. However, the knowledge of their molecular composition is required to adapt the pyrolysis processes and/or subsequent treatments that these new feedstocks will have to undergo. Molecular-scale characterization of complex organic mixtures requires the use of ultra-high resolution mass spectrometers such as the Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometers. This instrument offers the best performance in terms of resolution, dynamic range, and mass accuracy. It allows unique molecular formulas to be unambiguously assigned to all compounds in the sample. This work is, therefore, based on the development of analytical tools using FTICR mass spectrometry for the characterization of pyrolysis oils and new energy sources. To address these new issues, analytical techniques previously used for fossil fuels have been adapted. The selectivity of the different atmospheric pressure ionization sources (ESI, APPI, and APCI) and the laser desorption and ionization (LDI) source were evaluated and online coupling with chromatography was established to separate into molecular families and provide additional information. Graphical representations such as double bond equivalent (DBE) versus carbon number and van Krevelen plots were used to highlight interesting information obtained about the molecular composition of the oils. This work has increased our molecular knowledge of these new feedstocks, enabling us to evaluate and adapt recovery processes.

Catalyse synergique οr/silicium par activatiοn d’οrganοsilanes et d’hydrοsilanes au mοyen de cοmplexes d’Au(Ι) : dévelοppements et applicatiοns

Doctorant·e
PASCARETTI Mathieu
Direction de thèse
DALLA VINCENT (Directeur·trice de thèse)
PALE PATRICK (Co-directeur·trice de thèse)
TAILLIER CATHERINE (Co-encadrant·e de thèse)
Date de la soutenance
12/01/2024 à 10:00
Lieu de la soutenance
Amphithéâtre Augustin Normand, bâtiment UFR sciences et techniques
Rapporteurs de la thèse
SIMONNEAU ANTOINE Université de Toulouse 3 - Paul Sabatier
THIBAUDEAU SEBASTIEN UNIVERSITE POITIERS
Membres du jurys
BERIONNI GUILLAUME, , UNIVERSITE DE NAMUR
DALLA VINCENT, , Université Le Havre Normandie (ULHN)
PALE PATRICK, , Université de Strasbourg
SIMONNEAU ANTOINE, , Université de Toulouse 3 - Paul Sabatier
TAILLIER CATHERINE, , Université Le Havre Normandie (ULHN)
THIBAUDEAU SEBASTIEN, , UNIVERSITE POITIERS
WEIBEL JEAN-MARC, , UNIVERSITE STRASBOURG 1 LOUIS PASTEUR
Résumé
Depuis le début des années 2000, la catalyse à l'or s'est particulièrement développée en chimie organique, offrant de nouvelles méthodes de synthèse très efficaces, généralement dans des conditions très douces. Ces avancées ont également conduit à une utilisation abondante en glycoscience, mais malgré d'importantes percées, l'application de la catalyse à l'or en glycochimie est typiquement limitée aux modes conventionnels d'activation des donneurs de sucres, dans lesquels le complexe d'or reste strictement confiné au rôle d'un acide σ- ou π-Lewis. Les travaux de recherche présentés au travers de ce manuscrit tendent à introduire un nouveau paradigme dans les réactions de glycosylation catalysées par l'or, en développant des réactions d'alcynylations catalytiques dans lesquelles le complexe d'or devrait surmonter les difficultés intrinsèques de ces couplages en contribuant à l'activation simultanée du donneur de sucre et de l'aglycone alcyne, sur la base d'une stratégie originale de catalyse synergique or/silicium. La combinaison idéale de catalyseur à l'or et de contre-ion a été recherchée (L et X) pour atteindre une réactivité catalytique et un contrôle stéréochimique optimums à la fois pour la réaction d’alcynylation de glycosides saturés simple mais aussi pour l’alcynylation de glycals. La découverte d’un impact important d’un contre-ion du complexe d’Au(I) jusque-là encore inexploité en catalyse synergique or/silicium associée à une phosphine fortement désactivante a permis d’étendre le champ d’application de la catalyse synergique or/silicium au-delà de l’alcynylation des glycosides.
Abstract
Since the early 2000s, gold catalysis has developed particularly well in organic chemistry, offering new highly efficient synthetic methods, generally under very mild conditions. These advances have also led to abundant use in glycoscience, but despite important breakthroughs, the application of gold catalysis in glycochemistry is typically limited to conventional modes of sugar donor activation, in which the gold complex remains strictly confined to the role of a σ- or π-Lewis acid. The research work presented through this manuscript tends to introduce a new paradigm in gold-catalysed glycosylation reactions, by developing catalytic alkynylation reactions in which the gold complex should overcome the intrinsic difficulties of these couplings by contributing to the simultaneous activation of the sugar donor and the alkyne aglycone, based on an original gold/silicon synergistic catalysis strategy. The ideal combination of gold catalyst and counterion was sought (L and X) to achieve optimum catalytic reactivity and stereochemical control both for the alkynylation reaction of simple saturated glycosides and for the alkynylation of glycals. The discovery of a major impact of a hitherto unexploited Au(I) complex counterion in synergistic gold/silicon catalysis associated with a strongly deactivating phosphine has made it possible to extend the field of application of synergistic gold/silicon catalysis beyond the alkynylation of glycosides.

Οptimisatiοn de la séparatiοn et la détectiοn de mοlécules οrganiques par chrοmatοgraphie en phase gazeuse basée sur les technοlοgies ΜEΜS pοur l'explοratiοn in situ d'envirοnnements planétaires et l'exοbiοlοgie.

Doctorant·e
PHILIPPART Arnaud
Direction de thèse
CARDINAEL PASCAL (Directeur·trice de thèse)
SZOPA CYRIL (Co-directeur·trice de thèse)
Date de la soutenance
12/01/2024 à 09:00
Lieu de la soutenance
Université de Rouen Normandie, Bâtiment IRCOF, amphithéâtre POIRIER  76821 Mont Saint Aignan
Rapporteurs de la thèse
FERNANDEZ XAVIER UNIVERSITE NICE SOPHIA ANTIPOLIS
POINOT PAULINE UNIVERSITE POITIERS
Membres du jurys
CARDINAEL PASCAL, , Université de Rouen Normandie (URN)
DE EMMANUELLE, , Université de Rouen Normandie (URN)
FERNANDEZ XAVIER, , UNIVERSITE NICE SOPHIA ANTIPOLIS
PEULON-AGASSE VALERIE, , Université de Rouen Normandie (URN)
POINOT PAULINE, , UNIVERSITE POITIERS
SZOPA CYRIL, , Comue Universites Paris-Saclay
Résumé
La chromatographie en phase gazeuse (CPG) est utilisée pour l’exploration spatiale depuis 1975. Elle permet la détection et l’identification des molécules organiques présentes dans des milieux extraterrestres tels que les atmosphères et les sols des planètes. Les instruments de CPG embarqués dans les sondes spatiales permettant ces analyses sont munis de colonnes majoritairement capillaires foncièrement similaires aux colonnes conventionnelles utilisées couramment en laboratoire. Cependant, l’ambition d’explorer des environnements de plus en plus lointains et/ou d’embarquer une quantité d’appareillage plus importante et/ou de réduire les consommations énergétiques, nécessite de réduire la taille et la masse des appareils embarqués. La miniaturisation d’un système de CPG pour l’exploration spatiale a donc été entrepris dans un projet incluant la coopération de plusieurs laboratoires spécialisés dans les domaines scientifiques nécessaires à l’élaboration de ce dispositif de CPG miniaturisé. Les travaux de cette thèse ont eu pour but la fonctionnalisation chimique et de dépôt de phase stationnaire (PS) au sein de micro-colonnes et de débuter l’adaptation de ces dernières aux contraintes de l’exploration spatiale. Les micro-colonnes en question ont été fabriquées grâce aux technologies MEMS. Le canal faisant office de colonne est long de 5 mètres avec une section interne carrée de 120 x 120 µm. La micro-colonne est en silicium avec un capot en verre. Dans un premier temps, la méthode de dépôt statique a été adaptée aux micro-colonnes étudiées pour des dépôts de polydiméthylsiloxane (PDMS). Il a été montré qu’une vitesse de dépôt du film de PS relativement lente permettait d’améliorer l’homogénéité de ce dernier. Des films de PDMS d’épaisseurs différentes (34 à 270 nm) ont été déposés avec succès. La reproductibilité de la méthode a été démontrée grâce à la préparation 3 micro-colonnes dont les performances observées ont été comparables. La stabilité du film de PDMS au sein des micro-colonnes dans le temps a été étudiée et une perte d’efficacité au cours des 5 premiers mois (35 %) puis un plateau sur les 3 mois suivants ont été observés. La deuxième partie de ces travaux a été focalisée sur l’application de traitement physico-chimiques dans le but d’améliorer les dépôts de PDMS au sein des micro-colonnes. Une méthode de désactivation à 100 °C adaptée aux micro-colonnes a été mise en place et une étape de lixiviation a été réalisée sur une micro-colonne et a permis un gain d’efficacité conséquent (20 %). Enfin, la présence d’une couche de TiO2 sur la surface des canaux en silicium a permis d’obtenir une micro-colonne de PMDS plus rétentive pour tous les composés testés et l’efficacité sur pics des composés les moins polaires a été augmentée. Pour finir, l’adaptation des micro-colonnes pour l’exploration spatiale a débutée. Deux micro-colonnes contenant des PS similaires à celles présentes sur curiosity ont été préparées. Les performances, bien que logiquement inférieures à celles des colonnes conventionnelles, sont suffisantes pour des applications simples telles que l’analyse d’hydrocarbures ou de molécules peu polaires. Le procédé sol-gel permettant d’augmenter la stabilité de la PS a été expérimenté sur ces micro-colonnes mais la faible température de maturation de ces dernières de 150 °C n’a pas permis le greffage de ces phases réticulées sur la surface. En effet, les tests de cyclages thermiques en conditions de vol spatial ont considérablement détérioré les phases préparées par la méthode sol-gel tandis que les dépôts classiques de PDMS et de polyéthylèneglycol ont été moins affectés. Enfin, des tests chromatographiques réalisés avec plusieurs configurations de colonnes (section circulaire ou carrée, serpentin etc.) a montré que la section carrée des canaux et la configuration en serpentin étaient les principaux éléments responsables de l’élargissement des pics, en comparaison avec un tube capillaire classique.
Abstract
Gas chromatography (GC) is already used for space exploration since 1975. This technique allows the detection and the identification of organic molecules which can be found in extra-terrestrial environments such as planetary atmospheres and soils. The GC systems embedded in the space probes allowing these analyzes are equipped with mainly capillary columns fundamentally similar to the conventional columns commonly used in laboratory. Meanwhile, the ambition to explore more and more distant environment, to travel with more material and to reduce the energy consumption, requires to reduce the size and the mass of the embedded devices such as the chromatography devices. Thus, a project consisting of the miniaturization of a GC device for space exploration has started. This project includes the cooperation of several laboratories each specialized in a scientific field necessary for the development of this miniaturized GC system. This work aimed to achieve chemical functionalization and stationary phase (SP) coating on microchips and to start their adaptation for space exploration constraints. Microchips were manufactured using MEMS technologies and are composed of silicon with a glass cover. The channel composing the column is 5 meters long with a square internal section of 120 x 120 µm. First, the static coating method was adapted and optimized for the microchips studied and for the coating of polydimethylsiloxane (PDMS). It has been shown that a slow SP coating rate allowed to improve the homogeneity of the SP film. Different PDMS film thicknesses (34 to 270 nm) were successfully coated. The reproducibility of the method was demonstrated thanks to the preparation of 3 identical microchips whose chromatographic performances were similar and hopeful. The stability of the PDMS film coated inside a microchip decreased significantly during the first 5 months (35%) and stabilized over the next 3 months. The second part of this work focused on the application of physicochemical treatments in order to improve the PDMS coating on microchips. A deactivation method working at 100°C and adapted to microchips was implemented and its effectiveness, although logically lower than the usual deactivations carried out around 300°C, was demonstrated. In addition, a leaching step was carried out on a microchip giving a significant gain of efficiency (20%). Finally, the presence of a TiO2 layer on the silicon inner wall gave a PDMS microchip that was more retentive for all the compounds tested and also the less polar compound peaks were more efficient. Finally, the microchip adaptation for space exploration has started. Two micro-columns containing similar SP to those used on the curiosity rover were prepared. Performances, although logically lower than those of conventional columns, are sufficient for simple applications such as the analysis of hydrocarbons or low-polar compounds. The sol-gel process which role is to increase the SP stability was experimented on these microchips but the too low maturation temperature of 150 °C did not allow to graft these crosslinked SP on the surface. Indeed, thermal cycling tests carried out under space travel conditions considerably deteriorated the SP prepared by the sol-gel process while the classic PDMS and polyethylene glycol films were less affected. Finally, chromatographic tests carried out on a set of several column configurations (circular or square section, serpentine etc.) showed that the square section of the channels and the serpentine configuration were the main elements responsible for the peak broadening, in comparison with a classic capillary tube.